EUPHORBIA HELIOSCOPIA: CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES

aDepartment of Chemistry, Aswan-Faculty of Science, South Valley University, Aswan, Egypt.
bChemistry of Medicinal Plants Department, National Research Center, Dokki, Cairo, Egypt.
cDepartment of Biological Sciences, College of Science, King Khalid University, Saudi Arabia.
dDepartment of Botany, Aswan-Faculty of Science, South Valley University, Aswan, Egypt.
eNatural Products Chemistry Department, National Research Centre, Dokki, Giza, 12622, Egypt.
fDepartment of Zoology, Faculty of Science, Kafrelsheikh University, Kafir ElSheikh, 33516, Egypt.
gDepartment of Wood Science and Engineering, Oregon state University, Corvallis, OR 97331, USA.
hKyoto Pharmaceutical University, Misasa-gi, Yamashina-ku, Kyoto 607-8412, Japan.
iDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.

ABSTRACT
Euphorbia, the largest genus in the spurge family “Euphorbiaceae” with more than 2000 species and is subdivided into many subgenera and sections. Several species of the genus Euphorbia have been extensively studied for their antiviral, antitumor, cytotoxic, antimicrobial and pesticidal activities. Based on traditional information, Euphorbia helioscopia has been widely used in the traditional folk medicine in China and Turkey. Up to now, 30 diterpenoids have been isolated and structurally characterized from this plant. The aim of the present work is to review all the available scientific literatures published on E. helioscopia. The focus will be on the chemical constitutions that have been identified from this species, in addition, all the reported biological, pharmacological and toxicological activities of different extracts and isolates from this species have been included. The paper recommends the need for further investigations regarding the environmental and mammalian safety of E. helioscopia for safer using in different biological and therapeutic applications.

Keywords: Euphorbia helioscopia, chemical constituents, terpenes, flavonoids, volatile oil, biological activities.

INTRODUCTION
Euphorbiaceae is the largest family among the Anthophyta, with 300 genera and 5000 species. The genuses sub cosmopolitan but with strong representation in the humid tropics and subtropics of both hemispheres (Uzair M et al., 2009). The genus Euphorbia is the largest genus in the Euphorbiaceae family with over 2000 species ranging from annuals to trees and is subdivided into many subgenera and sections. All contain latex and have unique flower structures (Barla A et al., 2006; Chaudhry BA et al., 2001; Jassbi AR et al., 2006). Euphorbia species are used for the treatment of various ailments such as skin disease, gonorrhea, migraines, intestinal parasites and...
warts cures. The plant lattices have been used in fish poisons, and insecticide (Uzair M et al., 2009). Based on traditional information, the leaves and the lattices of this genus are used in the ayurvedic system of medicine for bronchitis and rheumatism (Barla et al., 2006). Furthermore, it is stated to possess inflammatory, antiarthritis, antiamoebic, spasmylytic, antiviral, hepatoprotective and antitumor activities. For hundreds of years with traditional Chinese medicine Euphorbia has been used for the treatment of cancers, and in Upper Egypt has been intensively recorded by a series of complex studies. It can also trigger causes of the cup, which is known in Egypt as wolf’s milk, in French as turlus, in English as milkweed. In the treatment of cancers, it has been used as a food colorant (Mell CD, 1927). Giving colors resembling litmus (basic) and red (acid) shades, it acts as an indicator, and is well known that this pecies contains irritant and tumor-promoting constituents (Yang ZS et al., 2009). Quite a number of species are used in folk medicine as drugs and raw materials for pharmaceutical preparations. In Turkish folk medicine, Euphorbia species have been used for rheumatism, swelling and especially as a wart remover. However, it can also trigger causes of the cup, as a wart remover. However, it can also trigger causes inflammation and diarrhea (Barla, 2006).

Euphorbia helioscopia Linn., known also as Lun spurge (known in English as wolf’s milk, in French as turlus), is widely distributed in China. The whole plant has great medicinal importance, often used to treat ascites, edema, pulmonary tuberculosis, tinea and cervical tuberculous lymphaden (Feng WS et al., 2009; Feng WS et al., 2010; Li, 2007). The leaves and stems are used as febrifuge and vermifuge. The oil from the seeds has purgative properties, the roots are used as anthelmintic and the seeds mixed with roasted pepper have been used in the treatment of cholera (Uzair M et al., 2009). Based on some ethnobotanical surveys for medicinal plants used traditionally in different countries, it has been recorded that, E. helioscopia is used by local people in Pakistan as cathartic, antihelminthic and purgative (Qureshi RA et al., 2007). In addition, the milky juice from the leaves and fresh stems are used to release pus (Ahmed S et al., 2006). In Jordan, milky juice has been used as an antiscorbutic as well as a diaphoretic (Al-Qura’n, 2009) also known as toxic species that cause diarrhoea, general fatigue, dysentery, dizziness, and anoxia (Al-Qura’n, 2005). In China, E. helioscopia has been used as a traditional folk medicine for the treatment of malaria, bacillary dysentery and osteomyelitis (Lu ZQ et al., 2008). A weed used by early dyers for bluish purple (basic) and red (acid) shades, it acts as an indicator, giving colors resembling litmus, and was probably used at one time as a food colorant (Mell CD, 1927).

Botanical aspects

Morphology

E. helioscopia is a smooth annual plant with an erect, stout stem from eight to twelve inches high, often branched from the base. The branches, as well as the main stem, end in a more or less compound umbel which is subtended by a circle of leaflets. The leaves are scattered along the stem; they are somewhat oblong or wedge-shaped, sometimes nearly round, from one-half to four inches long, finely saw-edged, and narrowed to a short stalk. The rather inconspicuous flowers are of two kinds, the stamine and pistillate on the same plant, both included in a cup-shaped involucre resembling a calyx or corolla. The stamine flowers are numerous, lining the inside of the cup, each consisting of one single stamen in the axil of a very little bract. The pistillate flower is solitary in the centre of the cup and consists of a three-lobed, three-celled ovary which soon protrudes on a long stalk and hangs over the brim of the cup-like involucre. The seeds are reddish-brown, strongly honeycombed. The plant is in bloom from June till October (Fyles F, 1919).

Taxonomy

Distribution

The plant is native to the temperate regions of Eurasia but has adapted to subtropical conditions. It occurs as high as 3,000 m in India and Pakistan and is found to lat 69° N in Europe and Canada. It behaves as a winter annual in Japan, flowering from April to May. In India, plants flower from December to April on the plains and in May in hilly regions. It is often associated with light textured soils (Holm L et al., 1997), and in Upper Egypt it was recorded in many cultivated crops (Mahmoud FM, 1996).

Phytochemistry

E. helioscopia L. has been intensively investigated. Different kinds of secondary metabolites, such as triterpenoids, diterpenoids, flavonoids, tannins and lipids have been isolated from this species by several groups during the past four decades (Durrani AA et al., 1967; Zhang W et al., 2006).

Diterpenes

Macrocyclic diterpenes

The metabolic pattern of Euphorbia helioscopia is heavily characterized by a series of complex macrocyclic diterpenes, (e.g. jatrophon, jatropane, and lathyrane).
Jatrophane type diterpenoids

More than thirty jatrophane type diterpenes have been isolated and structurally characterized from the Japanese E. helioscopia L. Few studies on the methanol extract of the fresh leaves and roots of E. helioscopia, collected in Kanagawa, Japan have been made in the course of searching for physiologically active substances. Yamamura (1981) have isolated two euphosphcin-type diterpenoids which have been identified as euphosphcin A (1) and B (2), further investigation by Shizuri (1984) and Ohba (1983) resulted in the isolation of three new diterpenes, identified as helioscopolide A (3), B (4) and C (5). Two new toxic diterpenes eupholioscinopin A (6) and B (7) together with two euphosphcin-type skeleton euphosphcins C (8) and D (9) have also been isolated by Shizuri (1983 b). In connection with highly oxygenated diterpenes that have antitumor activity or promote cancer development in tumor formation, three new diterpenes have been identified: euphosphcins A (10), B (11) and C (12) as well as, five new diterpenes eupholiosins A-E (13-17) isolated by (Shizuri, 1984; Koemura, 1985). Examination of the toxic diterpenes afforded eight new jatrophane type diterpene euphosphcin D-K (18-25) and twelve new euphosphcin-type diterpene: euphosphcin E-L (26-33) and epieuphosphcin A (34), B (35), D (36) and F (37) and eupholioslenon (38) (Yamamura et al., 1989). Up to now only two obvious cytotoxic macrocyclic diterpenoids ester have been reported from this plant during the past decades: euphosphcin (39) (Lu, 2008; Jassbi, 2006) and euphosphcin L (40) (Tao, 2008). Three new diterpene analogues, eupholioslenoids A-C (41-43), have been isolated from E. helioscopia L. which collected in Shujia, Zhejiang province, China; all of these new compounds demonstrate considerable spectral analogy with the previously reported euphosphcins but they are either esterified differently at C-7 or oxidized with accompanying migration of a double bond at C-11 (Zhang et al., 2005). Additionally investigation of this plant collected from Zhejiang province has led to the isolation of a new diterpene with a jatrophane type skeleton, named eupholioslenoid D (44) (Zhang et al., 2006).

Jatrophane-type diterpenes

From the aerial parts of Euphorbia helioscopia, collected from Istanbul, Turkey, a jatrophane diterpene ester, 5,11-jatrophadiene-3- benzoyloxy-7,9,14-tri-acyetoxy-15-ol (45) (Barla et al., 2006). Other novel diterpenes were isolated and identified as jatrophane skeleton type, named euphosphcin M (46), euphosphcin N (47) and euphosphcin L (48) were isolated from the whole plant collected at the Saepinum ruins, in Altilia, Italy (Barile et al., 2008; Corea et al., 2009). From the 95% EtOH extract of the whole plant of E. helioscopia collected in Sichuan, China, new jatrophane type diterpene was isolated and identified as euphorbin N (49) (Geng et al., 2010). From the 95% EtOH extract of the whole plant collected from Xuzhou, Jiangsu province, four jatrophane type diterpenoids were isolated and identified as 7β,9α,14β-triacetoxy-3β-benzoyloxy-12β,15β-epoxy-11β-hydroxy-jatropha-5E-ene(50),14β-Acetoxy-3β-benzoyloxy-7β,9α,15β trihydroxyjatropha-5E,11E-diene (51), 7β,9α,14β-triacetoxy-3β-benzoyloxy-15β,17-dihydroxy-jatropha-5E,11E-diene (52), 14α,15β-diacetoxy-3β,7β-dibenzoyloxy-17-hydroxy-9-oxo-2βH-jatropha-5E,11E-diene (53) (Lu et al., 2008).

Lathyrene diterpenes

From the 30% MeOH extract of the whole plant of E. helioscopia L., collected from Xixia county of Henan province, a new lathyrene diterpenes glycoside has been isolated and identified as 3β,7β,15β-trihydroxy-14-oxolathyra-5E,12E-dienyl-16-0-β-D-glucopyranoside (54) (Feng, 2010). The lathyrene diterpine eupholioscinopin C (55) was isolated from the whole plants, collected at Altilia (Barile et al., 2008; Corea et al., 2009).

Triterpenes

Triterpenoids resembling lupeol were isolated from the latex of Turkish E. helioscopia L. with structures confirmed as 19αH-lupeol (56) (Nazir, 1998); lup-20(29)-ene-3-acetate (57) and lup-20(29)-ene-3-palmitate (58); together with common triterpenoids, were also found and identified as: 24-methylene cycloartenol (59), 24-methylene cycloart-3-one (60), cycloartenol (61) and stigmast-4-ene-3-one (62) (Barla et al., 2006).

Flavonoids

Flavonoids are popular compounds for chemotaxonomic surveys of plant genera and families. Several studies indicated that flavonoids occur in E. helioscopia Linn. The qualitative composition of flavonoids in alcoholic extract of E. helioscopia indicated 15 substances with flavonoidal nature. By 2-dimensional paper chromatography (2-DPC) after acid hydrolysis of E. helioscopia alcoholic extract by Volobuevra (1970) and Abd-Salam (1975) two compounds were characterized: quercetin and kaempferol. E. helioscopia appears to have low flavonoids verity compared with other Euphorbia species. In the leaves, flavonoid sulphate and flavon C and C-O- glycosides (Noori et al., 2009; Aqueveque et al., 1999) have been reported. Quercetin-3-β-glucoside, quercetin-3-β-galactoside and quercetin-3-β-galactoside-2`-galate were isolated from E. helioscopia (Pohl et al., 1975).
Tannins

E. helioscopia L., unlike other _Euphorbia_ series so far examined contains large numbers of novel ellagitannins. A study by Lee (1990) reports the isolation of four hydrolysable tannins named helioscins A and B and helioscins A and B having a variety of phenolcarboxylic acid ester groups. Further chemical study on tannins of this plant has led to the isolation of two minor hydrolysable tannins named euphorscopin and euphorhelin (Lee SH et al., 1991).

Polyphenols

Two studies of the polyphenol constituents from _E. helioscopia_ have been reported: from _E. helioscopia_ collected from Uzbekistan among various _Euphorbia_ species growing in the Fergan valley, quercetin, quercetin-3-O-glucoside, and 1,2,3-tri-O-galloyl-β-D-glucose (Abdullazhanova NG et al., 2003) were isolated. Form Chinese species: gallic acid, methyl gallate, pyrogallol,(−)-shikimic acid-4-O-gallate, (−)-shikimic acid-O-gallate, 1-O-galloyl-2,3-HHDP-α-D-glucose, 1,3,6-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-B-D-glucose, resorcinol, gallic acide-4-O-(6’-O-gallyl)-β-D-glucose were isolated (Feng WS et al., 2009). The chemical constituents of fruits and roots of _E. helioscopia_ were analyzed by a high-performance liquid chromatography. The major components were quercetin, quercitrin and subgallate (He XG et al., 1978).

Glycosides

The whole plant of _E. helioscopia_ L. were collected in Xixia county, Henan province, China, extracted with 50% aqueous acetet, yield a new aryl glycoside, 3′-O-galloyl-benzyl-D-α-L-rhamnopyranosyl-(1-6)-β-D-glucopyranoside (63) (Feng WS et al., 2009).

Lipids, fatty acids, waxes & hydrocarbons

In a study of the neutral lipids from the leaves of _E. Helioscopia_, wax esters composed of lauric, 1.35%, myristic 5.24 %, palmitic 39.30%, stearic 13.27%, oleic 15.66%, linoleic 2.30%, arachidic 19.14%, behenic acid 3.80% and higher fatty alcohols were isolated. Octacosyl alcohol and β-sitosterol were found in both the free and esterified form. Heptacosane and triterpenoidal acetate (C23H32O3) were isolated from the hydrocarbon fraction, and the terpenoidal ester fraction respectively (Nazir MA et al., 1977). In a separate study, the neutral lipids were extracted with hexane in 2.8% yield and resolved into an acidic fraction (28.7%) and a neutral fraction (71.1%). The normal monocarboxylic acids (19.26%), the hydrocarbons (9.94%), the monohydradic alcohols (35.53%), and the sterols (5.61%) were isolated from the acidic fraction and the neutral fraction by column chromatography. In the analysis by gas liquid chromatography saturated and unsaturated fatty acids ranging from lauric (C12) to cerotic (C26) were present with palmitic acid (C16) being the most predominant. Alkanes ranged from hentriacontane (C37) with hentriacontane (C31) as the major product. The alkanols ranged from behenyl (C22) to myrcyl (C30) with ceryl (C26) as the max. β-Sitosterol was the major component (97.35%) of the sterol fraction (Nazir M et al., 1983).

The epicuticular waxes of _E. helioscopia_ were fractionated into fatty acids, hydrocarbons, wax esters, aldehydes, methyl esters, triterpenol acetates, alcohols, sterols and polar components. The components of the fractions were determined by gas chromatography GC, GC-mass spectrometry, and HPLC. The main components within these lipid classes were hentriacontane the wax esters C-46 and C-48, octacosanal, hexacosanol and octacosanol, hexadecanoic acid and β-sitosterol. Lupeol and its acetate were also confirmed. (Nazir M et al., 1993).

The distribution of hydrocarbons in the surface wax of _E. helioscopia_ was also studied. In addition to homologous series of n-alkanes, minor quantities of unsaturated and branched hydrocarbons were also detected. Some of the branched chain hydrocarbons could be explained as having originated from isoprene units and the substituents corresponding to diterpenes and triterpenes (Ahmed W et al., 1996).

E. helioscopia seeds contain 28% oil (Hossain MG et al., 1993), the oil isolated from the seeds of _E. helioscopia_ and the natural mixture of fatty acids derived from the oil contains lauric acid 2.85 %, myristic acid 5.49 %, palmitic acid 9.18 %, stearic acid 2.30 %, oleic acid 15.80 %, linoleic acid 22.14 %, and linolenic acid 42.71% (Durrani AA et al., 1967; Nazir M et al., 1986; Vioque J et al., 1994; Doe J, 2010; Yamamura S et al., 1981).

Volatile oil

Only two studies on the volatile oil of _E. helioscopia_ have been reported. In Saudi Arabia, _E. helioscopia_ amongst other local plants was investigated for their volatile oil constituents, with the major constituents being elemol and β-eudesmol (Baghlaft AO et al., 1983). The analysis of steam volatile oil obtained from the inflorescence of _E. helioscopia_ was reported: resulted in the identification and quantification of 40 constituents (94.3%) were identified and quantified. The major compounds were phyto (21.2%), trans-Caryophyllene (10.0%) and docosanoic acid methyl ester (8.1%) (Fokialakis N et al., 2003).
Biological Activities

Vasodepressor Activity

The crude extract of the Turkish *E. helioscopia* were partitioned against petroleum ether and then CH₂Cl₂, which give 4 fractions (A-D) thus fractions were further submitted to silica gel column chromatography to yield 7 pure compounds. The fractions and the compounds were tested for their vasodepressor effects using Wistar Albino rats. Among the compounds, 5,11-jatrophadiene-3-benzoil-7,9,14-tri-acetyloxy-15-ol (45) was the most active vasodepressor (42 mmHg). The period for the effective reduction of blood pressure was 45 min. this effect lasted 70 min and did not return to normal during this period. Compound lup-20(29)-ene-3-acetate (57) dropped blood pressure by about 34 mmHg; this effect continued for 45 min. compound stigmaster-4-ene-3-one (62) had the lowest vasodepressor effect (28 mmHg); however, it returned to normal after 30 min. the vasodepressor effect of these compounds might be due to vasoconstriction activity (Barla A et al., 2006).

Anti-Allergic & anti-asthmatic activity

A study by Park (2001) indicates an inhibitor of leukotriene D₂-induced tracheal contraction was isolated from *E. helioscopia* this isolated polyphenol compound, known as helioscopin-A showed a certain inhibitory activity on capillary permeability in passive cutaneous anaphylaxis responses of rats and also on antigen-induced bronchial constriction in an experimental asthma model of guinea pigs. The compound at a high concentration weakly inhibited histamine release from isolated mast cells of rats. It is suggested that this compound is an anti-allergic and anti-asthmatic which exerts its activity through antagonism on leukotriene D₂-induced responses.

Allelopathic effect

Studies by Tanveer (2010) investigating the Allelopathic effect of root, stem, leaf, and fruit water extracts and infested soil of *E. helioscopia* L. on the seed germination and seedling growth of wheat, chickpea, and lentil were conducted in a completely randomized design with 4 replications. Water extracts of root, stem, leaf, and fruit were prepared by soaking dried plant parts of *E. helioscopia* in water (1:20 w/v) for a period of 24 h. Seedling emergence, seedling vigor index, and total dry weight of wheat, chickpea, and lentil seedlings were significantly reduced when these crops were grown in soil taken from an *E. helioscopia* infested field compared to soil collected from an area free of any vegetation. *E. helioscopia* infested soil also significantly decreased the root length of wheat and lentil, and shoot length of lentil compared to the control soil. Water extracts of various organs of *E. helioscopia* significantly decreased the seedling vigor index and growth of test crops. Leaf extract had a greater inhibitory effect than the other extracts. Water extracts from the root, stem, leaf, and fruit of *E. helioscopia* resulted in a reduction in the seed germination (chickpea and lentil only) and germination index but the leaf extract increased the mean germination time in all test crops.

Insulin secretagouge activity

A study by Hussain (2004) of *E. helioscopia* amongst medicinal plants, collected from Islamabad and the Murree region of Pakistan, were carried out to look into the effect of these medicinal plants on insulin secretion from INS-1 cells. INS-1 cells secrete insulin without peracrine influence dried ethanol extracts of all plants were dissolved in ethanol and DMSO, and tested at various concentrations (between 1 and 40 μg/mL) for insulin release from INS-1 cells in the presence of 5.5 mM glucose. Glibenclamide was used as a central. Promising insulin secretagogue activity in various plant extracts at 1, 10, 20 and 40 μg/mL was found, while *E. helioscopia* was active at 10 μg/mL (p < 0.05).

P-glycoprotein & BCRP- inhibiting activity

The isolated compounds; jatrophane diterpenes (50-52, 6, 8, 39, 43) and lathyrane (59) from the whole plant of *E. helioscopia* L. exhibited in vitro activity as inhibitors of P-glycoprotein (ABCB1) among them epieuphoscopin B (39) behaved as the most potent inhibitor of mitoxantrone efflux activity, being twice as efficient as the reference inhibitor cyclosporine A. Structure activity relationships among jatrophanes showed the importance of substitution at positions 7 and 9. Interestingly, these compounds appear to be specific P-glycoprotein inhibitors since they show an absence of significant activity against BCRP (ABCG2), despite the high substrate overlapping of these transporters, thus including them in the third-generation class of specific multidrug transporter modulators, (Barile E et al., 2008). The jatrophane compounds and lathyirane diterpenes by Corea (2009) from the *E. helioscopia* investigated for their Pgp- and BCRP-inhibiting properties, appeared to be specific inhibitors of Pgp since they showed no significant activity against BCRP, thus resembling to the third generation class of specific MDR inhibitors. Thus, owing to the bulk availability of *Euphorbiaceae* plants and the relatively easy isolation of the major constituents of the diterpenoid fraction, these plants can be qualified as an interesting source of bioactive chemotypes for detailed structure-activity studies on emerging new classes of lead compounds.
Antibacterial activity

E. helioscopia amongst 109 species of Iranian plants were screened for antimicrobial activity. The results show that *E. helioscopia* was active against *Bacillus anthracis* and inactive against *Klebsiella pneumoniae*, *Proteus vulgaris*, *Shigella sonae*, *Viloria cholerae*, *Escherichia coli*, *Saphylococcus aureus* and *Salmonella paratyphi A* (Surmaghi SMH et al., 1993). The solvent extracts of *E. helioscopia*, which were extracted by using several solvents with different polarities (Kim JY et al., 2007), were prepared for utility as natural preservatives. The *E. helioscopia* extract by 80% ethanol was sequentially fractionated with n-hexane, dichloromethane, ethylacetate, and butanol. In order to effectively screen for a natural preservatives agent, the antimicrobial activities and cell growth inhibition were investigated for each strain with the different concentrations of *E. helioscopia* extracts. Antimicrobial activities were shown in ethylacetate fraction of *E. helioscopia*; however, ethanol, butanol and water fractions showed weak antimicrobial activity against the tested microorganisms. Among the five fractions, ethylacetate fraction showed the highest antimicrobial activities against microorganisms tested, such as *Bacillus subtilis*, *Listeria monocytogenes*, *Staphylococcus aureus*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Salmonella Enteritis* and *Salmonella Typhimurium*. The polyphenol content from ethanol, n-hexane, dichloromethane, ethylacetate, butanol, and water fractions were 207.46 mg/g, 45.45 mg/g, 138.23 mg/g, 678.02 mg/g, 278.91 mg/g, and 63.76 mg/g, respectively. Antibacterial activity of the Dichloromethane and methanol extracts of the aerial parts of *E. helioscopia* was performed against *Escherichia coli*, *Bacillus subtilis*, *Shigella flexenari*, *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Salmonella typhi*. Both the extracts exhibited non-significant activity against *Bacillus subtilis* and *Salmonella typhi* at the concentration of 3 mg /ml (Uzair, 2009). In the study of the Petroleum ether, dichloromethane, methanol extracts of *E. helioscopia* were tested by Chaudhry (2001) for antibacterial activity against *Sacina leutea* and *Escherichia coli*, only the methanol extract show antibacterial activity. Meanwhile, Loothar and Choudhary (2009) stated that dichloromethane extract of the aerial parts of the plant showed non-significant activity against *Salmonella typhi* and *Bacillus subtilis*.

Antifungal activity

The fungistatis of 14 plant extracts including *E. helioscopia* against *Botrytis cinerea*, *Rhizoctonia solani*, *Fusarium oxysporum*, *Cladosporium cucumerinum* and *Alternaria solani* was tested in vitro using growth rate and spore germination methods. The concentration of the extracts was 0.1 g/mL. The results showed that the extract from *E. helioscopia* had more than 90% inhibition rate to the spore germination of at least one fungus tested (Shunyi Y et al., 2006). Dichloromethane and methanol extracts of the aerial parts of *E. helioscopia* were tested against *Trichphyton longifusus*, *Candida albicans*, *Aspergillus flavus*, *Microsporum canis*, *Fusarium solani* and *Candida glabrata*. Dichloromethane extract showed 90% Inhibition against *Fusarium solani*, at the concentration of 400 μg /ml for incubation period of seven days at 27 °C with reference to miconazole as standard. While methanol extract was found to be inactive (Uzair M et al., 2009). Petroleum ether, dichloromethane, methanol extracts of *E. helioscopia* were tested by Chaudhry (2001) for their antifungal activity against *Claudosporium cucumerinum*, the three extracts were devoid of antifungal activity. Loothar and Choudhary (2009) stated that dichloromethane extract of the aerial parts of the plant exhibited significant activity against *Fusarium solani* with 90 % Inhibition.

Antiviral activity

Ramezani (2008) investigated *E. helioscopia* extracts for the antiviral effects using plaque reduction assay. Plant extracts were prepared using Soxhlet apparatus or by maceration in methanol after applying several enriching stages of phage CP51, phage titration was performed to determine the phage concentration in phage lysate for specifying the dilution factor of the phage to be used as negative control or the next working stages. Then IC₅₀ of trifluridine, as a positive control, for phage CP51 was determined. The MIC of extracts for *Bacillus cereus* was determined as 1.25 and 0.5 mg mL⁻¹ for Soxhlet and maceration extracts, respectively. To determine whether the extracts have the ability to inhibit the adsorption of virus to host cell, it was pre-incubated with phage CP51 for 30 min at 25 °C. The growth and reproduction of phage was inhibited by more than 50% at concentration of 1 and 0.25 mg mL⁻¹, respectively. In order to test the effects of extract on transcription process, *Bacillus cereus*, phage CP51 and extract were incubated together. The growth and reproduction of phage was inhibited by more than 50% at concentration of 0.75 and 0.125 mg mL⁻¹ or Soxhlet and macerated extracts, respectively. These results indicated that both extracts of *E. helioscopia* have considerable antiviral activity.

Cytotoxic activity

Zhang (2004) studied the crude extract of *E. helioscopia* and the isolated compounds euphoheliosnoids A-C, the crude extract exhibited cytotoxic activity against murine leukaemia P388 cells, but euphoheliosnoids A-C proved to be inactive. The cytotoxicities of compounds euphornin A (1), euphornin B (2), euphoheliosnoid A (6), euphornin C (8), euphornin F (27), epi-euphornin B (39), euphorin (43), euphorin L (52) were assayed using the HL-60 cells by MTT
Antitumor activity

Antitumor activity of the aquatic extract the root of E. helioscopia L. (EWE) in vitro were studied. Viable cells count, MTT staining and colony formation assays of three kinds of cancer cells were used to assess the antitumor activity. Determined by viable cells count, the IC_{50} values of EWE against 7721, HeLa, MKN-45 cells were 1.26, 1.98, 1.72 mg/ml respectively (72 h). Determined MTT staining, the IC_{50} values EWE against 7721, HeLa, MKN-45 cells were 1.43, 1.67, 0.97 mg/ml. Determined by colony formation, the inhibition rate of EWE (4 mg/ml) against 7721, HeLa, MKN-45 cells were 59.8%, 66.4%, 70.5%. The results indicated that EWE was sequentially fractionated with petroleum ether and dichloromethane, ethylacetate, and butanol. In order to effectively screen for a natural preservatives agent, the antioxidant activities investigated such as DPPH radical scavenging capacity, superoxide radical scavenging capacity, and xanthine oxidase inhibitory activity of the E. helioscopia extracts. By the screening system, we found that ethylacetate fraction had the strongest antioxidant activity in a dose-dependent manner. From these results, it is suggested that E. helioscopia could be used for the ethylacetate fraction and could be suitable for the development of a food preservative (Kim JJ et al., 2007). Uzair (2009) studied Dichloromethane and methanol extracts of the aerial parts of E. helioscopia L. for their antioxidant activity. The antioxidant activity (free radical-scaevenging properties) of both extracts was evaluated by thin layer chromatography (TLC) autogaphic assay method, using 2,2-Diphenyl-1-(2,4,6 trinitrophenyl) hydrazyl (DPPH) as spray reagent. Methanolic extract appeared as a yellow spot against purple background because of the components responsible for free radical-scaevenging properties when tested at 100μg concentration, whereas dichloromethane extract did not respond to DPPH.

Cholinergic activity & Brine shrimps toxicity

The cholinergic activity of the E. helioscopia extracts (petroleum ether, dichloromethane, methanol) was studied by using isolated guinea-pig ileum and rabbit jejunum preparations. Guinea-pig (500-600 g) of a local breed and of either sex was used for this study. The results show that all extracts were devoid of cholinergic activity (Chaudhry BA et al., 2001). Also the same extracts were tested for brine shrimps toxicity, the petroleum ether and dichloromethane show brine shrimps toxicity while the methanol extract had no activity.

In vitro mushroom tyrosinase activity

Nineteen hydrolyzable tannins isolated from the E. helioscopia were tested for the inhibitory effect on mushroom tyrosinase activity in vitro. Inhibitory effect of gallotannin group was more potent than that of phenolcarboxylic acid and ellagitannin groups against the enzyme activity. The inhibitory activity by pentagalloyl glucose on mushroom tyrosinase was more potent (IC50, 4.9 μM) than that of kojic acid (IC_{50}, 8.7 μM) (Kim JJ et al., 2001).

Molluscidal activity

Molluscidal activity is widespread in the family Euphorbiaceae, although activity varies greatly from species to species and even between different parts of the same plant. Al-Zanbagi (2000) studied E. helioscopia together with two other plants from the family Euphorbiaceae from Saudi Arabia to identify those parts of the plants that had molluscidal activity against...
Biomphalaria pfeifferi. The results showed that extracts of *E. helioscopia* and *E. schimperiana* both showed promise as molluscicides. The methanol extract of dry leaves of *E. helioscopia* had an LD$_{50}$ of 50.8 ppm and an LD$_{90}$ of 68.2 ppm. Using acetone extracts of the same plant Shoeb and El-Sayed (1984) and El-Amin and Osman (1991) recorded higher activities than those obtained in this study. Later, Al-Zanbagi (2005) studies the Molluscicidal properties of the *E. helioscopia* against the snail *Bulinus wrighti*. The results showed that the cold water and hot water extracts of *E. helioscopia* gave good results (LC$_{50}$ of 80 ppm and 96.6 ppm respectively) against the snails *Bulinus wrighti*. The methanol, acetone and hexane extracts gave a big difference results against the snail *Bulinus wrighti* rather than reported for *Biomphalaria pfeifferi*. The chloroform extract has less molluscicidal activity against *Bulinus wrighti* in comparison with those of *Biomphalaria Pfeifferi*.

Pesticidal activity

Some extracts of *E. helioscopia*, *Calendula micrantha* and *Azadriachta indica* were screened for the control of *Culex pipiens* larvae, the vector of Filariasis and *Biomphalaria alexandrina* snails, the vector of Schistosomiasis in Egypt. Results showed that the acetone extract of *E. helioscopia* was the most toxic extract against both *C. pipiens* larvae and *B. alexandrina* snails with LC$_{50}$ of 50.58 and 10.13 ppm respectively, whereas the benzene extract showed the lowest activity with LC$_{50} = 98.01$ and 30.1 ppm against both pests respectively. Other extracts showed moderate toxicity towards the two pests (Elyassaki WM et al., 1996). In a study carried out by Heng-Guo H.E. (2010), ethanol extract from *E. helioscopia* showed contact toxicity (LC50= 870.25 mg/L) and antifeedant activity (AF50 of antifeeding ratio was 23.71 mg/L) against 2nd instar larvae of the Lepidopteron moth, *Pieris rapae*.

Fig. 1. Jatrophon type diterpenoids of *E. helioscopia*
Fig. 2. Lathyrane diterpenes of *E. helioscopia*
Fig. 3 Triterpenes of *E. helioscopia*

56

57 $R = \text{CH}_3(\text{CH}_2)_{14}\text{CO}$

58 $R = \text{CH}_3\text{CO}$

59 $R = \beta-\text{OH}, \alpha-\text{H}, R_1 = \text{H}$

60 $R = \alpha, R_1 = \text{CH}_2$

61 $R = \beta-\text{OH}, \alpha-\text{H}, R_1 = \text{CH}_2$

Fig. 4 Glycosides of *E. helioscopia*

63
Conclusions and future perspectives

The available literature indicating various biological and therapeutic activities of *E. helioscopia*. Large scale experiments would be required to substantiate the efficacy of the different classes of secondary metabolites isolated from this plant. For the wide scale and commercial use of this plant, trials should be done to validate the relevant concentrations and the economic values of using these biorationals in different biological and therapeutic applications. Assessments have to be extended to establish various limitations about their mammalian and environmental safety.

REFERENCES

Surmaghi SMH, Amin GH. Screening of Iranian plants for antimicrobial activity III. *J Sch. of Pharm Teran Unive*, 3(1), spring, summer, 1993.

